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Decoherence in a classically chaotic quantum system: Entropy production
and quantum-classical correspondence

Diana Monteoliva* and Juan Pablo Paz†

Departamento de Fisica Juan Jose´ Giambiagi, FCEyN, UBA, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
~Received 5 July 2001; published 30 October 2001!

We study the decoherence process for an open quantum system that is classically chaotic~a quartic double
well with harmonic driving coupled to a sea of harmonic oscillators!. We carefully analyze the time depen-
dence of the rate of entropy production showing that it has two relevant regimes: For short times it is
proportional to the diffusion coefficient~fixed by the system-environment coupling strength!; for longer times
~but before equilibration! it is fixed by dynamical properties of the system~and is related to the Lyapunov
exponent!. The nature of the transition time between both regimes is investigated and the issue of quantum to
classical correspondence is addressed. Finally, the impact of the interaction with the environment on coherent
tunneling is analyzed.
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I. INTRODUCTION

Decoherence has been identified as one of the main in
dients to explain the origin of the classical world from
fundamentally quantum substrate@1,2#. In fact, according to
the decoherence paradigm, classicality is an emergent p
erty imposed upon open systems by the interaction with
external environment. In all realistic situations this intera
tion, as it became clear in recent years, generates ade facto
superselection rule that prevents stable existence of the
of the states in the Hilbert space of a system. Only a smal
of states of the system are relatively stable, they are
so-called pointer states@3,4#. While pointer states are mini
mally disturbed by the interaction with the environment, c
herent superpositions of such states are rapidly destroye
decoherence. Thus, this process transforms the quantum
of the system into a mixture of pointer states. In recent ye
the study of the physics of decoherence has helped to cla
many interesting features of this process. For example,
nature of the decoherence time scales is now well unders
@5,6#; the essential features of the process by which
pointer states are dynamically selected by the environm
are well understood@7–9# ~see Ref.@10# for a recent review!.
Moreover~and most notably!, the study of decoherence be
came active from the experimental point of view where
first generation of experiments exploring the fuzzy bound
between the quantum and the classical world are alre
starting to produce interesting results@11–13#.

Over the course of these studies it became clear that
decoherence process has very peculiar features for qua
systems whose classical analogs are chaotic. In fact, for
systems, decoherence seems to be absolutely essential
store the validity of the correspondence principle violated
very short times~the breakup time depends logarithmica
on the Planck constant! @14–17#. The reason for the break
down of the correspondence principle for chaotic syste
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~and for its restoration due to decoherence! can be under-
stood as follows: For these types of systems, quantum e
lution continuously generates a coherent spreading of
wave function over large scales both in position and mom
tum. Thus, a classically chaotic Hamiltonian generate
quantum evolution that typically produces ‘‘Schro¨dinger
cat’’-type states, i.e., starting from a state that is well loc
ized both in position and momentum the quantum evolut
produces a state that is highly delocalized exhibiting stro
interference effects. One may be tempted to argue that
effect, while existing, could not be relevant for large mac
scopic systems. But, surprisingly or not, even for as large
object as the components of the solar system, which are
otic, quantum predictions are alarming: On a time scalet\ as
short as a month for Hyperion, one of the moons of Sat
whose chaotic tumbling motion has been analyzed@18#, the
initial Gaussian state of this celestial body would spread o
distances of the order of the radius of its orbit.@15#. Thus,
though the planetary dynamics appears to be a safe dist
away from the quantum regime, as a consequence of
chaoticcharacter of the evolution, a simple application of t
Schrödinger equation would tell us that this isnot the case.
In fact, the macroscopic size of a system~be it a planet or a
cat! is not enough to guarantee its classicality. Thus, cla
cality in such system would emerge only as a consequenc
decoherence, as we will discuss later in this paper.

The reason why a classically chaotic Hamiltonian gen
ates highly nonclassical states can be related to the fact
the chaotic dynamics is characterized by an exponential
vergence of neighboring trajectories. To be able to pres
this argument, based on the notion of trajectories, it is be
to formulate quantum mechanics in phase space~a task that
can be accomplished by using, for example, the Wigner
tribution @19# to represent the quantum state!. In fact, if one
prepares a quantum system in a classical state, with a Wi
function well localized in phase space and smooth over
gions with an area that is large compared to the Planck c
stant, it will initially evolve following classical trajectories in
phase space. Therefore, after some characteristic time
initially smooth wave packet will become stretched in o
~unstable! direction and, due to the conservation of volum
©2001 The American Physical Society38-1
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DIANA MONTEOLIVA AND JUAN PABLO PAZ PHYSICAL REVIEW E 64 056238
squeezed in the other~stable! one. This squeezing an
stretching is also accompanied by a folding of classical
jectories which, in the fully chaotic regime, tend to fill all th
available phase space. The combination of these three re
effects—squeezing, stretching, and folding—forces the s
tem to explore the quantum regime. Thus, being stretche
one direction the wave packet becomes delocalized and,
consequence of folding, quantum interference between
different pieces of the wave packet, which remain coher
over long distances, develops. The time scale for the co
spondence breakdown can be also estimated via a sim
argument: As the wave packet squeezes exponentially fa
one direction~momentum, for example!, sp(t)5sp(0)e2lt,
it will correspondingly become coherent over a distance t
can be estimated from Heisenberg’s principle asl (t)
>\/sp(0)elt. When the spreading is comparable with t
scalex where the potential is significantly nonlinear, foldin
will start to appreciatively affect the evolution of the wav
packet and a long range quantum interference will set
This time, which corresponds approximately to the tim
when quantum and classical expectation values start to d
from each other, can, therefore, be estimated ast\

5l21ln(sp(0)x/\) ~note that the quantityx can be as large
as the size of the orbit of a planet@15,20# for gravitational
potential!.

But nothing of this sort is evident in real life: the moon
Saturn does not spread over large distances and the c
spondence principle seems to be valid for macroscopic
jects that, like Hyperion, behave according to classical la
So, how can classical mechanics be recovered? Decoher
is a way out of this problem. As the system evolves wh
continuously interacting with its environment, it may b
come classical if the interaction is such that it continuou
destroys the quantum coherence that is dynamically ge
ated by the chaotic evolution. The role of decoherence
recovering the correspondence principle has been sugge
some time ago@15# and numerically analyzed more recent
@16#.

But, as originally suggested by Zurek and Paz@14#, the
decoherence process for classically chaotic systems ha
other very important feature, which comes as a bonus.
interaction with the environment destroys the purity of t
system since they become entangled. Thus, information
tially stored in the system leaks into the environment a
therefore, decoherence is always accompanied with ent
production. This is, of course, true both for classically reg
lar and classically chaotic systems. But what distinguis
chaotic systems is the existence of a robust range of pa
eters for which the rate at which the information flows fro
the system into the environment~i.e., the rate of entropy
production! becomes entirely independent of the strength
the coupling between the system and the environment an
dictated by dynamical properties of the system only~i.e., by
averaged Lyapunov exponents!. The reason for this can als
be understood using a simple~clearly oversimplified! argu-
ment. The decoherence process destroys quantum inte
ence between distant pieces of the wave packet of the sy
and puts a lower bound on the small scale structure that
Wigner function can develop. Thus, the Wigner function c
05623
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no longer squeeze indefinitely, but it stops contracting a
consequence of the interaction with the environment, wh
can be typically modeled as diffusion@21–23#. As a conse-
quence of this, and due to the fact that expansion~or folding!
is not substantially affected by diffusion, the entropy of t
system grows at a rate that is essentially fixed by the ave
rate of expansion given by the average Lyapunov expon
In this regime, the entropy production rate becomes indep
dent of the diffusion constant~which, on the other hand, is
responsible for the whole process!. This result was first con-
jectured in Ref.@14#. More recently, numerical evidence su
porting the conjecture was presented@17,24–28#. The aim of
this paper is to present solid numerical evidence suppor
this result and to study other related aspects of decoher
for a particular chaotic system. As will become clear lat
our studies show that the time dependence of the entr
production rate has two rather different regimes. First, th
is an initial transient where the entropy production rate
proportional to the system-environment coupling stren
~i.e., in this initial regime the rate behaves in the same w
as in the regular-non-chaotic case!. Second, after this initial
transient the entropy production rate goes into a reg
where its value is fixed as conjectured in Ref.@14# by the
Lyapunov exponents of the system and is independent of
strength of the coupling to the environment. In our work w
show that the transition timetc between both regimes is lin
early dependent on the entropy of the initial state, and lo
rithmically dependent on the system-environment coupl
strength.

Our aim in this paper is not to give an extensive list of
relevant references connected to the study of dissipative
fects in classically chaotic quantum systems. However,
believe it is worth pointing out that our work is by no mea
the first attempt to study these effects which, in connection
problems such as the impact of noise on localization,
appearence of classical features in phase space~like strange
attractors, etc.! were studied in pioneering works sever
years ago~see, for example, Ref.@29#!. As general source o
reference in this area we recommend interesting books w
one can find a rather extended compilation of import
works @30,31#. For our numerical study we have chosen
nonlinear system the driven quartic double well, described
detail in Sec. II. We study the evolution of our system f
very simple~Gaussian! initial conditions~i.e., initial condi-
tions that, from a start, do not exhibit any quantum interf
ence effects! so as to focus our attention on the interpl
between two competing effects: generation and destruc
of dynamically generated interferences. We also presen
Sec. II, a discussion of the breakdown of correspondence
chaotic systems. Then, on Sec. III the way in which w
model the interaction between our system and the envir
ment is presented with some detail. We do this by using t
complementary approaches based on master equations
giving consistent results but one of them enables the stud
the evolution for long dynamical times, which is relevant f
discussing the impact of decoherence on tunneling. Num
cal results concerning the time dependence of the deco
ence rate and a discussion of their relevance are present
Sec. IV. Finally, we discuss the impact of the interacti
8-2
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DECOHERENCE IN A CLASSICALLY CHAOTIC . . . PHYSICAL REVIEW E 64 056238
with the environment on the tunneling phenomena in Sec
and we sum up with some concluding remarks in Sec. V

II. EVOLUTION OF THE QUANTUM ISOLATED SYSTEM

In this section we study the dynamical behavior of
isolated quantum system with Hamiltonian

H0~x,p,t !5
p2

2m
2bx21

x4

64a
1sxcos~vt !, ~1!

which corresponds to a harmonically driven quartic dou
well. This nonlinear system has been extensively stud
@32,33# in the literature. Fors50 the system is integrabl
and exhibits the generic phase space of a bistable syste
has two stable fixed points atx56A(32ba),p50 ~with as-
sociated energyE5216b2a) and one unstable fixed point a
x50,p50 ~with E50). The presence of the driving term
introduces an infinite number of primary resonance zone
the phase space of the system. The tori near the separat
the nondriven system (E50) and KAM invariant tori in the
region between resonance zones are progressively destr
as the amplitudes of the driving increases. The phase spa
of the system starts to look chaotic, presenting in gener
mixed nature as can be seen~for two sets of parameters! in
Fig. 1. The regions around the two stable fixed points and
chains of resonant islands form regular regions where
dynamics of the system is nearly integrable. The chaotic
ers between regular regions develop from the homocl
tangles, the intricate interweaving of the stable and unsta
manifolds originated at the hyperbolic fixed points betwe
the resonant islands or the one at the origin. For small va
of the driving amplitude, chaotic layers are so thin that o
those near the unstable fixed point of the integrable sys
can be seen in the stroboscopic phase space portrait. A
value ofs is increased these chaotic regions gain in releva
while resonances other than the two first ones near the s
fixed points become in turn smaller and are almost invisi
to the eye. For large values of the driving amplitudes the
different chaotic layers merge into what is called the chao
sea; the stable islands and two first resonant islands are m
reduced@see Fig. 1~a!#. In what follows we will choose pa-
rameters so that either the majority of the phase spac
chaotic, as in Fig. 1~b!, where the stable islands around t
stable fixed points of the integrable system have shrun
invisibility and only the two first resonance islands are se
or the regular regions coexist with the chaotic sea as sh
in Fig. 1~a!.

As we mentioned above, our aim is to follow the quantu
evolution of initial states whose Wigner functions are fu
contained either in a regular island or in the chaotic sea
illustrated in Figs. 1~a! and 1~b!. This requirement forces u
to take values of\, which are small enough. Indeed, for th
parameter set corresponding to Fig. 1~a!, the leftmost regular
island has an area that is approximately given byA;6p. If
we need states well localized within each region~the regular
islands or the chaotic sea! we need to compare this area wi
the one covered by the dark ellipses appearing in Fig
which are given byAe52p ln(20)sxsp5p ln(20)\ ~i.e.,
05623
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we consider initial states that are pure, minimal uncertain
coherent states!. Thus, a reasonable value for\ ~the one we
choose! is \50.1 for the island to be about 20 times larg
than the extent of the initial state~for the parameters corre
sponding to Fig. 1~b! a larger value of\ could also be cho-
sen for our purposes!. In addition to this, we numerically
solved the Schro¨dinger equation for this system evolving th
above initial states using two different methods. First,
integrated this equation with a step-by-step algorithm usin
high resolution spectral method@34#. Second, we solved the
same equation applying a numerical technique based on
use of Floquet states@35#. This method consists of numer
cally finding eigenstates of the unitary evolution operator
one period~Floquet states!, which form a complete basis o
the Hilbert space of the system. By expanding the initial st
on this basis, the solution of the Schro¨dinger equation be-
comes trivial@36#. Thus, all the difficultly of the method is
hidden in finding the Floquet states~the same applies whe
solving the Schro¨dinger equation for a time-independe
Hamiltonian!. We succesfully used this method for some p
rameter sets but did not apply it for all cases of interest.

FIG. 1. Stroboscopic phase space of the driven double well w
parameters~a! m51, b510, a51/32, s51, andv55.35 and~b!
m51, b510, a51/32, s510, andv56.07. The borders of the
dark elipses represent contours of minimun uncertainty Gaus
initial conditions at 1/20 of its peak value, forx0523.7, p050,
sx50.05, sp51 on the leftmost island andx051, p050, sx

2

50.05, andsp
250.05 on the chaotic sea.
8-3
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DIANA MONTEOLIVA AND JUAN PABLO PAZ PHYSICAL REVIEW E 64 056238
fact, the main difficulty of the method is the number of Fl
quet states required to accurately expand the initial st
shown in Fig. 1, which rapidly grow as\ becomes small~for
example, for the parameters of Fig. 1~b!, with \50.1, one
needs more than 200 Floquet states to evolve the w
packet centered in the chaotic sea!. In what follows we will
discuss the typical results one finds when solving the Sc¨-
dinger equation with the above initial states.

A. Initial states in a regular island

The time series of the expectation values of the positiox
of the particle both for classical and quantum evolutions,
the initial Gaussian state located within the leftmost regu
island as shown in Fig. 1~a! can be seen in Fig. 2. Notice tha
the state is centered atx0523.7, p050 and that its vari-
ances aresx50.05,sp51. Classical and quantum expect
tion values remain identical within the numerical errors
our calculations, in agreement with previous results@33,37#.
Similar results were found for higher order moments ofx and
p and for different initial conditions embedded either in t
stable or the resonant islands and for different sets of par
eters of the system. These results can be understood a
lows: When the initial Gaussian function is located within
regular island, its Floquet decomposition is characterized
a small number of states, mostly localized on the regu
regions. Thus, only very few frequencies enter into play
the dynamics and the time series of the expectation value
any observable appear as quasiperiodic and regular. M
over, as the Floquet states entering in the decompositio
the initial state are localized on integrable tori, EBK quan
zation is possible and both classical and quantum expecta
values ~and distribution functions! look identical for long
time scales. Breakdown of correspondence is expected
time scales inversely proportional to some power of\ @38#,
which is sufficiently slow to cause no difficulties with th
classical limit of quantum theory.

Nevertheless, as localized Floquet states come from
superposition of almost degenerate symmetry-related p
~doublets!, each belonging to a different parity class, t
quantum particle will eventually tunnel through the chao
sea into the related regular island@33,39,40# while for the
classical particle this feature is forbidden. Tunneling tim

FIG. 2. Time series of the classical and quantum expecta
values ofx for the states drawn on Fig. 1~a!.
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are very long for the parameters we chose~typically they are
of the order of 50–100 times the driving period!. The accu-
mulation of error makes step-by-step integration of t
Schrödinger equation troublesome to study this tunneling
gime. However, a solution based on Floquet states is m
convenient since it allows us to compute the state atany time
provided we know it within the first periodt, with t
52p/v @40–42#. We applied this method for several sets
parameters chosen in such a way that the number of Flo
states needed to faithfully represent the Hilbert space d
not become too large~still enabling us to keep states we
localized within the regular island!. One of the paramete
sets we used for this purpose ism51, b510, a51/32, s
54, v55.35, and\51. The stroboscopic phase space loo
like something in between Figs. 1~a! and 1~b!, but the value
of \ is ten times larger than the one used in the above fig
For this parameter set, Fig. 3 shows the evolution of
expectation value of the position for an initial state located
the leftmost regular island, centered atx0523.52 andp0
50 ~with sx50.25, sp52). This initial state was expande
by 20 Floquet states. In this case we clearly see the sys
tunnel from one regular island to the other one: The exp
tation value of position oscillates around the left minima b
after some time, starts moving towards the right reaching
other well in a tunneling time that in this case is of the ord
of t556t ~notice that deviation from classical behavior
observed for times well below the tunneling time!.

The evolution of quantum and classical distribution fun
tions is shown in Fig. 4 for two different times: a time hal
way the tunneling (t528t) where the wave packet is com
pletely delocalized, and the time for which the state h
tunneled to its pair related regular island on the rightt
556t). Notice that though the state is initially peaked in t
leftmost regular island, there is a non-negligible probabil
of finding it on the chaotic sea, due to the relatively hi
value of \. For this reason, the Tail of the initial Gaussia
distribution spreads over the whole chaotic sea as time g
on. For the classical case, this effect is not very import
since the state stays within the regular island. On the c
trary, for the quantum evolution, one clearly observes
wave packet tunneling through the chaotic sea into the
related regular island on the right.

n FIG. 3. Time series of the quantum~full line! and classical
~dotted line! expectation values ofx for an initial state located
within a regular island~see text!.
8-4
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DECOHERENCE IN A CLASSICALLY CHAOTIC . . . PHYSICAL REVIEW E 64 056238
B. Chaotic states

For Gaussian states initially located within the chao
sea, as the one corresponding to the ellipse in Fig. 1~a!, the
behavior is quite different from that of the regular initi
state. In fact, Fig. 2 shows the time series of the quantum
classical expectation values of the position for this init
state. We see that after a time scale much shorter than th
the regular case~our results are consistent with a logarithm
dependence of this time scale on\), discrepancies betwee
classical and quantum predictions are evident. For the v
ous different initial conditions and parameters of the syst
tested, breakdown of correspondence occurs at very e
times, and in all cases it is comparable with the dynam
scalet. Apart from the noticeable deviation between qua
tum and classical predictions, one clearly sees that the
pectation values have a much more irregular behavior tha
the integrable case. This is expected and, in the quan
regime, can be explained as due to the fact that the num
of Floquet states required to expand the initial state is, c
trary to the regular case, rather large. Thus, as Floquet s
are mostly extended over the whole chaotic sea~all the more
in the semiclassical limit! the evolution of the initial Gauss
ian state will contain many more frequencies~a few hundred,
typically! and as a consequence of this the time evolution
any expectation value looks rather irregular. The deviat
between classical and quantum expectation values is ju
consequence of the fact that the quantum state, describe
the phase space by the Wigner function, becomes more
more different from the corresponding classical distribut
function @16#. This situation is illustrated in Fig. 5 where w
show the Wigner distribution function for the above initi
Gaussian state~localized in the chaotic sea!, compared with
the corresponding classical distribution function for four d
ferent times. Very quickly—even before classical and qu

FIG. 4. Classical~left! and quantum~right! evolutions of the
phase space distribution function for the tunneling case. Param
are that of Fig. 3. White~black! areas show regions where th
Wigner function is positive~negative!. In the classical~left! case,
positivity of the Wigner function is preserved and only an expon
tially small tail of the initial state enters the chaotic sea.
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tum expectation values deviate from each other—the qu
tum distribution function becomes affected by small sc
interference effects, and develops into a highly nonclass
distribution function. These results are also in agreem
with previous ones@33,37#.

For our purposes it is very useful to represent the tem
ral evolution of quantum states in phase space. The t
dependence of the Wigner function~shown in Fig. 5! is
goverened, in general, by an equation entirely equivalen
Schrödinger equation, which can be written as

Ẇ5$H0 ,W%PB1 (
n>1

~21!n~\/2!2n

~2n11!!
]x

(2n11)V]p
(2n11)W.

~2!

In this equation, the first term on the right hand side is

ers

-

FIG. 5. Classical~left! and quantum~right! distribution func-
tions for four different times. Already, for early times, interferen
effects are observed, but aftert;2t they spread over the whole
available phase space and go down to very small scales, as s
by the insets of area\, which blow up the tiny rectangles drawn o
the Wigner functions fort52t and t59t.
8-5
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DIANA MONTEOLIVA AND JUAN PABLO PAZ PHYSICAL REVIEW E 64 056238
Poisson bracket that generates purely classical evolu
The second term, containing higher odd derivatives, is
sponsible for the quantum corrections@19,37#. The fate of
the Wigner function can be understood qualitatively by us
the following simple argument@14#: If one starts from an
initial state which is smooth~as the ones shown in Fig. 1!,
the higher derivatives terms are negligible and the Pois
bracket term dominates. Therefore, the Wigner function w
tend to follow initially the Liouville flow, i.e., it will evolve
following the classical trajectories. As any point in the ch
otic sea is hyperbolic, the initially regular patch will stretc
along the unstable manifold and squeeze in the othe
stable—direction. As the Wigner function squeezes, its
rivative will tend to grow and, consequently, quantum c
rections will tend to become more and more important. T
time scale for which quantum corrections must be taken
account can be estimated ast\5l21ln(xsq(0)/\) @14# where
x is the scale where the nonlinearities of the potential co
into play and is usually defined asx5(]xV/]x

3V)1/2 @sq(0)
is the initial spread of the distribution function in the stab
manifold andl is the Lyapunov exponent of the syste#.
Moreover, as the motion is bounded, the Wigner funct
will eventually tend to fold and so different pieces will co
herently interfere making the distribution function devel
small scale structure as seen in Fig. 5. The scale at w
structure will tend to develop is typicallysub-Planckian:
thus, as we will havedp5\/L anddx5\/P ~whereL andP
are the sizes of the system in position and momentum!, the
region over which the Wigner function will tend to oscilla
has an area approximately given byA'\2/LP5\(\/LP)
!\ @43#. In our simulations we verified that, after a tim
consistent witht\'0.5t, for the set of parameters here co
sidered, the quantum phase space distribution does no
semble the classical one and the Wigner function oscilla
wildly on tiny scales of sizedp'0.01 anddx'0.005~being
the product of the order ofA5dpdx'531025!\). The
insets on Fig. 5 show the development of small scale st
ture on the Wigner functions for relevant times. There
detail of the distribution function over a region of area\ is
shown. The existence of this sub-Planckian structure in
Wigner distribution has been overlooked in the literature a
its relevance has only been noticed recently@43#.

III. COUPLING TO THE ENVIRONMENT: MASTER
EQUATIONS

Here we will describe the way in which we analyze t
evolution of our system when it is coupled to an enviro
ment. The role of such environment will be played in o
case by an infinite number of oscillators coupled to the s
tem via an interaction term in the Hamiltonian, which
assumed to be bilinear both in the coordinates of the sys
and the oscillators. As we are interested in following t
evolution of the system solely, we will compute the reduc
density matrixr obtained from the full density matrix of th
universe~system1environment! by taking the partial trace
over the environmentr5TrE(rU), whererU is the full den-
sity matrix of the universe. This reduced density matrix w
obey a master equation that can be obtained from the
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von Neumann equation by tracing out the environme
There is a vast literature dealing with the properties of
master equation obtained under a variety of assumptio
Our purpose here is not to present a review of these res
but to sketch the basic method used to obtain the ma
equations we will use for our studies below~see Ref.@10# for
a more extensive review on the derivation and properties
master equations in studies of decoherence!.

The general approach to obtain the master equation is
following: We model the environment by a set of harmon
oscillators with massmi and natural frequencyv i , in ther-
mal equilibrium at temperatureT. The Hamiltonian isHR

5( iv i(bi
†bi11/2), wherebi andbi

† are the annihilation and
creation operators, respectively, for a boson mode of
quencyv i . We further assume that the interaction Ham
tonian between the system and the environment isHI

5x( i(gibi1gi* bi
†), wheregi are coupling constants.

The evolution of the reduced density matrix of the partic
can be obtained by taking the partial trace over the envir
ment of the exact von Neumann equation for the full Ham
tonian, that readsi\ṙU5@H(t),rU#. This can be straightfor-
wardly done under a number of standard assumptions~see
Ref. @10# for more details!: First, one assumes that the sy
tem and the environment are initially uncorrelated and t
the reservoir is in an initial state of thermal equilibrium
some temperatureT. Second, one assumes that the syst
and the environment are very weakly coupled. So, solv
the von Neumann equation perturbatively in the interact
picture ~up to second order in perturbation theory! a master
equation for the reduced density operator is obtained, wh
fully determines the quantum dynamics of our system.
reads

ṙ~ t !52E
0

t

dt8gS~ t2t8!†x~ t !,@x~ t8!,r~ t !#‡1ı

3E
0

t

dt8gA~ t2t8!@x~ t !,$x~ t8!,r~ t !%#, ~3!

wherex(t) is the position operator in the Heisenberg pictu
and the above kernels are

gS~ t2t8!5(
i

ugi u2@112n~v i !#cos@v i~ t2t8!#,

gA~ t2t8!5(
i

ugi u2sin@v i~ t2t8!#, ~4!

with n(v)51/(eb\v21) ~andb51/kBT). It is worth stress-
ing that the above master equation is derived without app
ing to the usual Markovian approximation~see @10,22#!.
However, in our studies we restrict ourselves to the Mark
ian regime where the kernels~4! are local in time. We solved
the above master equation for two different regimes and
vironmental couplings. First, we considered the widely us
ohmic high-temperature regime of the Brownian moti
model where a simple master equation can be written
solved. Second, we obtained a master equation for the
8-6
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DECOHERENCE IN A CLASSICALLY CHAOTIC . . . PHYSICAL REVIEW E 64 056238
lution of a coarse grained density matrix obtained from E
~3! by averaging over one driving period. This can be na
rally done by using the Floquet representation and is us
to study some properties of the open system in the long t
regime. We will now describe the two methods.

A. Ohmic high-temperature environment

The simplest special case of Eq.~3! follows when assum-
ing the high-temperature limit of an ohmic environment. D
fining a spectral density for the environment asJ(v)
5 lim

Dv→0
p/Dv(v,v i,v1Dvugi u2, assuming that the spec

trum is ohmic, i.e., thatJ(v)5gmv/\, and going to the
high-temperature limit, gS(t2t8)5Dd(t2t8) and gA(t
2t8)52gḋ(t2t8) with D52mgkBT, the following well
known equation for the Wigner function of the system
obtained:

Ẇ5$H0 ,W%PB1 (
n>1

~21!n\2n

22n~2n11!!
]x

(2n11)V]p
(2n11)W

12g]p~pW!1D]pp
2 W. ~5!

The physical effects included in this equation are well und
stood: The first term on the right hand side is the Pois
bracket generating the classical evolution for the Wigner d
tribution functionW; the terms in\ add the quantum correc
tions. The environmental effects are contained in the last
terms generating, dissipation and diffusion, respectively
the high-T limit here considered, dissipation can be ignor
and only the diffusive contributions need be kept~doing this
we are taking theg→0 limit while keepingD constant!. The
diffusion constant was chosen small enough so that energ
nearly conserved over the time scales of interest. Equa
~5! was integrated by means of a high resolution spec
algorithm @34#. Results were stable against changes both
the resolution of phase space and the time accuracy requ
on each integration step. They will be presented in Sec.

B. Coarse grained master equation in the Floquet basis

It is interesting to write equation~3! in the Floquet basis
ucm(t)&5exp2ı«mtufm(t)&, where theufm(t)& are t periodic,
taking advantage of thet symmetry of our systemH0. There
are, in the literature, several approaches of this kind@39–42#.
Ours is similar to that of Kohler and co-workers@44#, though
in that reference the authors have restricted the use of
equation to the study of chaotic tunneling near a quasiene
crossing. When one writes the master equation in the Floq
basis and takes the Markovian high-temperature limit,
resulting equation hast periodic coefficients. Therefore, on
can derive a temporal coarse grained equation by taking
average of such equation over one oscillation period. T
resulting equation for the average density matrix in one
riod s turns out to be

ṡm,n5(
a,b

Mm,n,a,bsa,b , ~6!
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where the coefficientsMm,n,a,b are defined as

Mm,n,a,b52
ı

\
~«m2«n!da,mdb,n2D$db,n^^x

2&&m,a

1da,m^^x2&&b,n22^^x&&m,a^^x&&b,n%, ~7!

where the notation̂^A&&m,n51/t* t
t1tdt8^fm(t8)uAufn(t8)&

is used to denote time averages of matrix elements of op
tors in the Floquet basis. As this is an equation withconstant
coefficients, once these coefficients are numerically ca
lated, the solution is formally obtained forall times as
sm,n(t)5(a,b(eMt)m,n,a,bsa,b(0). Thedifficulty in solving
this equation resides on the large numbern of Floquet states
one typically needs to accurately represent a state locate
the chaotic sea~as we mentioned above, a semiclassical
gument to estimate the number of such states is given by
ratioA/(2p\), whereA is the area of the chaotic sea, whic
might quickly become a very large number!. As M has di-
mensionn4, numerical limitations spring up at this poin
However, for some parameter values it was still possible
manage the numerical problem~as shown in Sec. V!.

IV. RESULTS

Before going into a detailed description of our model f
the open system it is instructive to analyze Eq.~5! so as to
have an intuitive idea of what is going on. When the diff
sion term is absent—that means, states evolve simply
cording to Schro¨dinger equation—for a smooth initial stat
the dominant term is the Poisson bracket. As we alre
discussed in Sec. II, the Wigner function initially evolve
following nonlinear classical trajectories, looses its Gauss
shape and develops tendrils while folding. If the initial sta
is located in the chaotic sea, this happens exponentially
Due to the combination of squeezing, stretching, and foldi
the gradients increase and quantum corrections in Eq.~5!
become important, so discrepancies between quantum
classical predictions begin to be relevant. Also, quantum
terferences among different pieces of the wave packet
velop and generate oscillations in the Wigner function.

The effect of the decoherence producing term in Eq.~5!
can be understood as being responsible for two interrela
effects. On the one hand, the diffusion term tends to w
out the oscillations in the Wigner function suppressing qu
tum interferences. Thus, for this system decoherence is
dynamical suppression of the interference fringes that
dynamically produced by nonlinearities. The time scale ch
acterizing the disappearance of the fringes can be estim
easily using previous results@6#: On the other hand, fringes
with a characteristic wave vector~along thep axis of phase
space! kp decay exponentially with a rate given byGD

5Dkp
2 . Noting that a wave packet spread over a distanceDx

with two coherently interfering pieces generate fringes w
kp5Dx/\, one concludes that the decoherence rate isGD

5DDx
2/\2. This rate depends linearly on the diffusion co

stant. When the Wigner function is coherently spread o
the whole available phase space one expects fringes
wavelength of the order of 1/L, whereL is the size of the
8-7
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DIANA MONTEOLIVA AND JUAN PABLO PAZ PHYSICAL REVIEW E 64 056238
system~these are responsible for the existence of sub-Pla
structure in the Wigner function, as mentioned in Sec.!.
The rate at which these fringes disappear due to decoher

is then G̃D5DL2/\2. Thus, we can derive a condition th
should be satisfied in order for these fringes to be efficien
destroyed by decoherence: the destruction of the fringes,
takes place at a rateG̃D , should be faster than their rege
eration, that takes place at a rateV f fixed by the system’s
dynamics and related both to the Lyapunov time and
folding rate. Thus, ifV f!G̃D , the small scale fringes will be
efficiently washed out and the Wigner function would r
main essentially positive. It is worth mentioning that the d
struction of fringes would generate entropy at a rate whi
provided the conditionV f!G̃D is satisfied, should be inde
pendent of the diffusion constant, and should be fixed
V f . Thus, one could argue that every time the Wigner fu
tion stretches and folds, becoming an approximate cohe
superposition of two approximately orthogonal states, the
struction of the corresponding fringes should generate ab
one bit of entropy. If the time scale for the fringe disappe
ance (G̃D) is much smaller than the one for producing t
above superposition~fixed by V f) then the entropy produc
tion rate would be simply equal toV f ~ideally, one would
expect one bit of entropy created after a time 1/V f).

However, the disappearance of the interference fringe
not the only effect produced by decoherence. There is a
ond related consequence of this process~which is also
present in the classical case!: While interference fringes are
being washed out by decoherence, the diffusion term a
tends to spread the regions where the Wigner function
possitive, contributing in this way to the entropy growt
But, as discussed in Refs.@14,28#, the rate of entropy pro-
duction distinguishes regular and chaotic cases. For reg
states, decoherence should produce entropy at a rate tha
pends on the diffusion constantD. However, for chaotic
states the rate should become independent ofD and should
be fixed by the Lyapunov exponent. The origin of th
D-independent phase can be understood using a sim
minded argument~presented first in Ref.@14# and later dis-
cussed in a more elaborated way in Ref.@28#!: Chaotic dy-
namics tends to contract the Wigner function along so
directions in phase space competing against diffusion. Th
two effects balance each other giving rise to a critical wid
below which the Wigner function cannot contract. This loc
width should be approximatelysc

252D/l ~beingl the local
Lyapunov exponent!. Once the critical size has been reach
the contraction stops along the stable direction while the
pansion continues along the unstable one. Therefore, in
regime the area covered by the Wigner function grows
ponentially in time and, as a consequence, entropy gr
linearly with a rate fixed by the Lyapunov exponent. Mor
over, the appearance of a lower bound for the squeezin
the Wigner function makes quantum corrections unimport
and so the Wigner function will evolve classically~following
Liouville flow plus diffusive effects!, and the correspon
dence will be reestablished.

In this section we present solid numerical evidence s
porting the existence of thisD-independent phase. For sim
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plicity, instead of looking at the von Neumann entrop
HVN52Tr(r r ln rr) we examine the linear entropy, define
asH52 ln@Tr(r r

2)#, which is a good measure of the degr
of mixing of the system and sets a lower bound onHVN ~i.e.,
one can show thatHVN>H). The above argument concern
ing the role of the critical widthsc may appear as too simpl
but captures the essential aspects of the dynamical proc
We can present a more elaborate argument using the m
equation~5! to show that the rate of linear entropy produ
tion can always be written as

Ḣ52D^~]pW!2&/^W2&, ~8!

where the bracket denotes an integral over phase space
right hand side of this equation is proportional to the me
square wave number computed with the square of the Fou
transform of the Wigner function. This implies that the e
tropy production rate is closely related to the phase sp
structure present in the Wigner distribution. Thus, t
D-independent phase begins at the time when the m
square wavelength along the momentum axis scales with
fusion asAD ~assc does!. This behavior cancels the diffu
sion dependence ofḢ that becomes entirely determined b
the dynamics.

Apart from analyzing theD-independent phase of entrop
production we analyze the nature of the the transition fr
the diffusion dominated regime to the chaotic regime. T
time tc can also be estimated along the lines of the previ
argument: The time for which the spread of the Wigner fun
tion approches the critical one istc'l21ln@sp(0)/sc#. Ac-
cording to this estimatetc should depend logarithmically on
the diffusion constant and on the initial spread of the Wign
function ~for Gaussian initial states the spread depends
ponentially on the initial entropy, therefore,tc should vary as
a linear function of the initial entropy!. Our numerical work
is devoted to testing these intuitive ideas.

In the following sections we present our results. First,
will show ~for completeness of our presentation! how deco-
herence restores classicality washing out interference frin
Then, we focus on our main goal: the study of the entro
production rate of the system as a function of time.

A. Correspondence principle restored: Disappearance of
interference fringes

In Sec. II B we showed how classical and quantum exp
tation values of the position observable become differ
from each other after a relatively short time when the init
state is located within the chaotic sea. In Fig. 6 we show h
this result is affected by decoherence. There one observe
time dependence of the expectation value of position
tained by solving the master equation~5! ~i.e., considering
the decoherence effect! as compared with the correspondin
classical time series. It is clear that, in accordance with
sults previously obtained in Ref.@16#, the correspondence
principle has been restored.

With respect to the behavior of the Wigner functio
~shown for the case of pure Schro¨dinger evolution in Fig. 3!,
the impact of decoherence on this distribution is seen in F
8-8
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DECOHERENCE IN A CLASSICALLY CHAOTIC . . . PHYSICAL REVIEW E 64 056238
7 where we compare the decohered Wigner function with
classical distribution at three different times. It is clearly se
that decoherence in this case is strong enough to induce
sicality, which is reflected at the level of the Wigner functio
and, consequently, at the level of any expectation value.
worth mentioning that the condition for classicality discuss
above@14,15#, i.e., scx@\, is satisfied in our case: For th
parameters we are using here we have thatsc'0.2, x'4
and, therefore, we are in a~not so highly! classical regime
~remember that we are using\50.1). The small scale struc
ture developed by the distribution fuction on the isolat
evolution~Fig. 5! is stopped when it reaches the lower bou
sc imposed by the environment. The insets in Fig. 7 sh
the portions of areaA53\ of the decohered Wigner func
tion marked by the tiny rectangle fort59t. The sub-
Planckian structure observed for the isolated evolution
now absent: the interference fringes have a typical size th
abovesc50.2.

FIG. 6. Time series of the classical and quantum expecta
values ofx for the states drawn on Fig. 1~a!, for the open system
(D50.01).

FIG. 7. Classical~left! and quantum~right! distribution func-
tions for the same initial condition as on Fig. 5, att52t and t
59t, when the system is opened to the action of the environm
(D50.01).
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B. Entropy production

Here we study the time dependence of the entropy p
duction rate. In Fig. 8 we plot the time dependence
ln(dH/dt) both for the initial condition centered in the regu
lar island and for the one centered in the chaotic sea@the
initial states are the ones corresponding to those show
Fig. 1~a!#. Figure 8 illustrates one of the main points we wa
to establish in this paper. First of all, one notices a dra
difference between the behavior of the entropy product
rate for regular or chaotic cases. For regular initial con
tions, the entropy is always produced at a rate that is line
dependent on the diffusion coefficientD as it is clearly seen
in the plot at the top of Fig. 8. On the other hand, for chao
initial conditions the behavior is completely different. F
early times the rate depends linearly onD but this initial
regime is rapidly followed by one where the entropy produ
tion rate isindependentof the value of the diffusion coeffi-
cient. The existence of the initialD-dependent transient fo
the chaotic case comes as no surprise. Indeed, this is wh
expected if the entropy is coming from:~i! the destruction of
interference fringes~which are initially generated at a rela
tively slow rate!; ~ii ! the slow increase in the area covered
the possitive part of the Wigner function. The oscillatio
evident in both regular and chaotic evolution of the rate ha
the frequency of the driving force and are related bo
to changes in orientation of the fringes~decoherence is
more effective when fringes are aligned along momen!
and, more importantly, to the change in spread of
Wigner function in the momentum direction induced by t
dynamics.

n

nt

FIG. 8. Entropy production rate~in logarithmic scale! vs time
~in units of the driving period!. The bold curve is the~time depen-
dent! Lyapunov exponent. The linear dependence of the rate oD
appears in the graph at the top~regular initial state! and during the
initial transient in the lower plot. In this case~initial state in the
chaotic sea! the rate becomes independent on diffusion and is eq
to the Lyapunov exponent~if D is not too small, see text!.
8-9
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DIANA MONTEOLIVA AND JUAN PABLO PAZ PHYSICAL REVIEW E 64 056238
Contrasting with this initial behavior described above, i
tial conditions on the chaotic sea undergo a second, v
different regime where the entropy production rate isinde-
pendentof the value of the diffusion coefficientD. More-
over, the numerical value of the rate oscillates around
average local Lyapunov exponent of the system. In fact,
is the bold curve shown in Fig. 8, that shows the ‘‘tim
dependent Lyapunov exponent’’ that is computed as an
erage over an ensemble of trajectories weighted by the in
distribution. The ordinary Lyapunov exponent is obtained
the long time limit of this curve~but, as in this paper we ar
not dealing with equilibrium—or long time—properties, th
time dependent coefficient is the relevant quantity to co
pute!. For each trajectory the time dependent local Lyapun
exponent was calculated using the method proposed in
@45#. This result, which is robust under changes on init
conditions and on the parameters characterizing the dyn
ics, confirms the conjecture first presented in Ref.@14#.

It is interesting to remark that while the simple pictu
presented in Ref.@14# is in good qualitative agreement wit
our results, the arguments presented in that paper are
simple to include some important effects we found here
particular the oscillatory nature of the rate was complet
overlooked in Ref.@14#. However, having said this, it is stil
possible to test some important results obtained in Ref.@14#
for the transition timetc between both regimes. First, w
analyzed the dependence of the transition time on the d
sion coefficientD. Due to the oscillatory nature of the rat
there is some ambiguity in the definition oftc . Here, we
defined it as the time for which the rate reaches some v
after the initial transient. As the rate goes through a jump
two orders of magnitude when changing from one regime
the other, this definition is a reasonable one. Thus, we fo
a logarithmic dependence of the transition time on the dif
sion coefficient, as can be seen in Fig. 9. Second, we in
tigated the behavior of the rate as a function of the entrop
the initial state. Our definition oftc is the same as before
Parameters of the system for these studies where those
would allow states with initial entropy up toH(0)54 be
easily located within the chaotic sea. We obtained thus
results shown on Fig. 9, where a linear dependence of
transition timetc on H(0) is clearly seen. Both results con
firm the naive expectation concerning the nature oftc that we
discussed above.

It is remarkable that for long times the entropy producti
rate is indeed fixed just by the dynamics, becoming indep
dent of D ~after all, the entropy production is itself a con
secuence of the coupling to the environment but the valu
the rate becomes independent of it!. The results presented i
Figs. 8 and 9 were shown to be robust under change
initial conditions and other parameters characterizing
classical dynamics.

There are two limitations for the above results to be o
tained. On the one hand the diffusion constant cannot be
strong: In that case the system heats up too fast and
entropy saturates, making the numerical simulations unr
able. On the other hand, diffusion cannot be too small eith
If that is the case decoherence may become too weak an
interference fringes could persist over many oscillations;
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minimal value ofD required for efficient decoherence cou
be estimated as described above: If the Wigner function
coherently spread over a region of sizeDx;L, we would
need a diffusion constant larger thanDmin'\2/L2;1024 for
the environment to be able to wash out the smallest fringe
one driving period~this is nothing but the above conditio
V f!G̃D). In fact, Fig. 8 shows that whenD51025 the en-
tropy production rate is one order of magnitude smaller th
the one corresponding toD51024. Thus, for values ofD
that are too small, the condition for classicality isnot satis-
fied and theD-independent phase of the evolution is nev
attained: the Wigner function always retains a significa
negative part and decoherence is not effective.

V. DECOHERENCE AND THE SUPPRESSION
OF TUNNELING

For initial states localized in the regular islands cor
spondence is broken for long times when tunneling becom
effective, as pointed in Sec. II A. Here, we investigate t
influence of decoherence on this process by using
coarsed grained master equation~6!. In doing this we should
be careful to choose a number of Floquet states, which
large enough. Thus, decoherence couples these states an
expected quasiequilibrium state should be approximately
agonal in the Floquet basis. One expects that usingn Floquet
states to expand our Hilbert space, the master equa
would tend to mix the state in such a way that the entro
would grow up to a level where all states become occup
with equal probability. At this point the numerical simulatio

FIG. 9. Transition time between the diffusion dominated regi
and the one where the entropy production rate is set by
Lyapunov exponent is shown to depend linearly on entropy~top!
and logarithmically on the diffusion constant~bottom!. Numerical
results were obtained using the parameters:B510, C50.5, E
510, v56.16, D51023 ~top!, andH(0)50 ~bottom!.
8-10
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DECOHERENCE IN A CLASSICALLY CHAOTIC . . . PHYSICAL REVIEW E 64 056238
done in this way becomes clearly unreliable. We solved
master equation computing the Von Neumann entropyHVN
52Tr(s ln s) checking
that its value is kept well below saturation. For the sa
parameters we described in Sec. II A~and using Floquet
40 states instead! we were able to accurately study th
tunneling process from an initial state localized in t
leftmost regular island. We analyzed the evolution of t
expectation value of position̂ x&5Tr@xs#, which is
shown in Fig. 10. Suppression of tunneling is clea
observed. Notice that the asymptotic valuexa of ^x&, though
small, is not zero. This value can be estimated
xa5 lim

t→`
* (x,p)#VdxdpxW(x,p,t), whereV is the region

of the phase space within the leftmost regular island wh
the state is initially located. The numerical result shown
the above figure is consistent with this estimate, mean
that the final states has a significant part that remain
trapped in the left of the well. The evolution of the Wign
distribution function, shown in Fig. 11 fort528t and
t556t, illustrates the described behavior of the state
the system. It is also noticeable that the state is trappe
the leftmost island as a result of the interaction with t
environment.

It is interesting to notice that this picture would drastica
change if the coupling to the environment is switched on a
time t0.0 ~i.e., if we let the system to evolve freely, with it
own Hamiltonian, before coupling it to the environmen!.
This is very easy to do using the above master equation.
results obtained in this way are simple and intuitive: If w
switch on the coupling to the environment at a time when
system has already tunneled to the pair related island on
right (t556t), the environment will simply stop the stat
from tunneling back to the initial island. Figure 12~right!
shows the evolution of the Wigner function in this case.
contrast, if we turn on the coupling to the environment wh
the state is half-way through the tunneling~in an intermedi-

FIG. 10. Classical~left! and quantum~right! evolutions of the
Gaussian state initially localized at the leftmost regular island~see
Sec. II A! when the system is opened to the action of the envir
ment (D50.01), for the tunneling case.
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ate, delocalized, state at timet0528t), decoherence yields
an asymptotic state that has approximately half of the pr
ability in each side of the well~this is seen on the left column
of Fig. 12!.

VI. CONCLUSION

Decoherence is a process enforced by the interaction
tween a quantum system and its environment. Due to
interaction, entanglement is dynamically generated and
formation initially stored in the state of the system irreve
ibly leaks into the correlations with the environment. T
results we presented support the point of view stating@14#
that for classically chaotic systems the rate at which inf
mation flows from the system to the environment~the rate of
von Neuman entropy production! is independent of the
strength of the coupling to the environment~provided the
coupling strength is large enough!. Our results show that for
chaotic quantum systems, the classical limit enforced by
coherence is quite different from the one corresponding
regular systems. Thus, we showed that for classically cha

-

FIG. 11. Time series of the quantum expectation values ofx for
the state of Fig. 3.

FIG. 12. Evolution of the Gaussian state initially localized at t
leftmost regular island~see Sec. II A! when the environment (D
50.01) is connected att0528t ~on the left! or at t0556t ~on the
right!.
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systems there is an unavoidable source of unpredictab
the rate at which information is lost into the environment
entirely fixed by the chaotic nature of the system. To
contrary, for regular systems the entropy production rate
proportional to the strength of the coupling to the enviro
ment. Therefore, the existence of a regime of coupli
independent entropy production could be used as a diag
tic for quantum chaos. Our results also confirm previo
estimations@14,17# for the transition timetc between two
regimes: the one where the entropy production rate is di
sion dominated and the one that is set by the chaotic dyn
ics. Thus, we showed thattc is linearly dependent on th
initial entropy ~initial spread! and a logarithmically depen
dent on the diffusion constant.

From our results it is possible to develop an intuitive p
ture of the reason why entropy production rate becom
dominated by the chaotic dynamic. As we have describe
this paper, there are two inter-related processes contribu
to the growth of entropy. First, the destruction of the int
ference fringes that are dynamically produced in phase sp
by the streaching and folding of the chaotic evolution. T
entropy production rate associated with this process is o
n
ca

-

e

et

i-

05623
y:

e
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-
-
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s

-
-

-
s
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ng
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e
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ously determined by the slowest of the two time scales c
responding to the proceses of creation and anihillation
fringes. Therefore, when decoherence is effective, and
fringes disappear in a short time scale, the entropy prod
tion rate is of dynamical origin~and independent of the cou
pling strength between the system and the environme!.
Second, the spread of the positive peaks of the Wigner fu
tion also contributes to the entropy growth. In this case,
rate becomes independent of the coupling strength once
phase space distribution approaches a critical width. Both
these processes are present in a general case~only it is pos-
sible to study them separately in idealized cases, such a
the baker’s map@46#!. The results of this paper confirm thi
intuitive view, which can be made more precise when f
mulated in terms of Eq.~8!.
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