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Decoherence in a classically chaotic quantum system: Entropy production
and quantum-classical correspondence
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We study the decoherence process for an open quantum system that is classically(ahgaitic double
well with harmonic driving coupled to a sea of harmonic oscillgtov8e carefully analyze the time depen-
dence of the rate of entropy production showing that it has two relevant regimes: For short times it is
proportional to the diffusion coefficiertfixed by the system-environment coupling strengtbr longer times
(but before equilibrationit is fixed by dynamical properties of the systdand is related to the Lyapunov
exponenk The nature of the transition time between both regimes is investigated and the issue of quantum to
classical correspondence is addressed. Finally, the impact of the interaction with the environment on coherent
tunneling is analyzed.
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I. INTRODUCTION (and for its restoration due to decoherencan be under-
stood as follows: For these types of systems, quantum evo-
Decoherence has been identified as one of the main ingrddtion continuously generates a coherent spreading of the
dients to explain the origin of the classical world from awave function over large scales both in position and momen-
fundamentally quantum substrdte2]. In fact, according to tum. Thus, a classically chaotic Hamiltonian generates a
the decoherence paradigm, classicality is an emergent profiuantum evolution that typically produces “Schioger
erty imposed upon open systems by the interaction with aﬁat”-type _states,_ e, starting from a state that is well Ioc_al-
external environment. In all realistic situations this interac-z€d both in position and momentum the quantum evolution

tion, as it became clear in recent years, generatés f@acto produces a state that is highly delocalized exhibiting strong

superselection rule that prevents stable existence of the mo erferenpe effegts. One may be tempted to argue that this
fect, while existing, could not be relevant for large macro-

of the states in the Hilbert space of a system. Only a small sét

of states of the system are relatively stable, they are tha®op'c systems. But, surprisingly or not, even for as large an
. . : .~.~ Object as the components of the solar system, which are cha-
so-called pointer statd$,4]. While pointer states are mini-

. . . . . i ntum predictions are alarming: On a tim
mally disturbed by the interaction with the environment, co—OtC’ quantum predictions are ala g: On a time seales

2 . short as a month for Hyperion, one of the moons of Saturn
herent superpositions of such states are rapidly destroyed Whose chaotic tumbling motion has been analyiZ, the

decoherence. Thus, this process transforms the quantum st@{gia| Gaussian state of this celestial body would spread over
of the system into a mixture of pointer states. In recent year§istances of the order of the radius of its orbt5]. Thus,
the study of the physics of decoherence has helped to cIari%ough the planetary dynamics appears to be a safe distance
many interesting features of this process. For example, thgway from the quantum regime, as a consequence of the
nature of the decoherence time scales is now well understoashaoticcharacter of the evolution, a simple application of the
[5,6]; the essential features of the process by which theschralinger equation would tell us that this i@t the case.
pointer states are dynamically selected by the environmenh fact, the macroscopic size of a systébe it a planet or a
are well understoofi7—9] (see Ref[10] for a recent review  ca is not enough to guarantee its classicality. Thus, classi-
Moreover(and most notably the study of decoherence be- cality in such system would emerge only as a consequence of
came active from the experimental point of view where thedecoherence, as we will discuss later in this paper.
first generation of experiments exploring the fuzzy boundary The reason why a classically chaotic Hamiltonian gener-
between the quantum and the classical world are alreadgtes highly nonclassical states can be related to the fact that
starting to produce interesting resulfisl—13. the chaotic dynamics is characterized by an exponential di-
Over the course of these studies it became clear that theergence of neighboring trajectories. To be able to present
decoherence process has very peculiar features for quantuiis argument, based on the notion of trajectories, it is better
systems whose classical analogs are chaotic. In fact, for sugb formulate quantum mechanics in phase sgacesk that
systems, decoherence seems to be absolutely essential to ¢an be accomplished by using, for example, the Wigner dis-
store the validity of the correspondence principle violated fortribution [19] to represent the quantum statin fact, if one
very short timegthe breakup time depends logarithmically prepares a quantum system in a classical state, with a Wigner
on the Planck constanf14—-17. The reason for the break- function well localized in phase space and smooth over re-
down of the correspondence principle for chaotic systemgions with an area that is large compared to the Planck con-
stant, it will initially evolve following classical trajectories in
phase space. Therefore, after some characteristic time the
*Email address: monteoli@df.uba.ar initially smooth wave packet will become stretched in one
"Email address: paz@df.uba.ar (unstable direction and, due to the conservation of volume,
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squeezed in the othefstable one. This squeezing and no longer squeeze indefinitely, but it stops contracting as a
stretching is also accompanied by a folding of classical traconsequence of the interaction with the environment, which
jectories which, in the fully chaotic regime, tend to fill all the can be typically modeled as diffusig@1-23. As a conse-
available phase space. The combination of these three relatgdence of this, and due to the fact that expansarriolding)
effects—squeezing, stretching, and folding—forces the sysis not substantially affected by diffusion, the entropy of the
tem to explore the quantum regime. Thus, being stretched iaystem grows at a rate that is essentially fixed by the average
one direction the wave packet becomes delocalized and, asrate of expansion given by the average Lyapunov exponent.
consequence of folding, quantum interference between thim this regime, the entropy production rate becomes indepen-
different pieces of the wave packet, which remain coherentlent of the diffusion constar{tvhich, on the other hand, is
over long distances, develops. The time scale for the correesponsible for the whole proces¥his result was first con-
spondence breakdown can be also estimated via a simpjectured in Ref[14]. More recently, numerical evidence sup-
argument: As the wave packet squeezes exponentially fast porting the conjecture was presenféd,24—2§. The aim of
one direction(lmomentum, for examp)ecrp(t)zap(O)e‘“, this paper is to present solid numerical evidence supporting
it will correspondingly become coherent over a distance thathis result and to study other related aspects of decoherence
can be estimated from Heisenberg's principle Hs) for a particular chaotic system. As will become clear later,
;ﬁ/ap(O)e“. When the spreading is comparable with theour studies show that the time dependence of the entropy
scaley where the potential is significantly nonlinear, folding production rate has two rather different regimes. First, there
will start to appreciatively affect the evolution of the wave is an initial transient where the entropy production rate is
packet and a long range quantum interference will set inproportional to the system-environment coupling strength
This time, which corresponds approximately to the time(i.e., in this initial regime the rate behaves in the same way
when quantum and classical expectation values start to diffeas in the regular-non-chaotic cas8econd, after this initial
from each other, can, therefore, be estimated tas transient the entropy production rate goes into a regime
=7\*1In(op(0))(/h) (note that the quantity can be as large where its value is fixed as conjectured in Rgif4] by the
as the size of the orbit of a plangt5,2Q for gravitational Lyapunov exponents of the system and is independent of the
potentia). strength of the coupling to the environment. In our work we
But nothing of this sort is evident in real life: the moon of show that the transition timg between both regimes is lin-
Saturn does not spread over large distances and the correarly dependent on the entropy of the initial state, and loga-
spondence principle seems to be valid for macroscopic obdthmically dependent on the system-environment coupling
jects that, like Hyperion, behave according to classical lawsstrength.
So, how can classical mechanics be recovered? DecoherenceOur aim in this paper is not to give an extensive list of all
is a way out of this problem. As the system evolves whilerelevant references connected to the study of dissipative ef-
continuously interacting with its environment, it may be- fects in classically chaotic quantum systems. However, we
come classical if the interaction is such that it continuouslybelieve it is worth pointing out that our work is by no means
destroys the quantum coherence that is dynamically genethe first attempt to study these effects which, in connection to
ated by the chaotic evolution. The role of decoherence iproblems such as the impact of noise on localization, the
recovering the correspondence principle has been suggestagpearence of classical features in phase sfiikeestrange
some time ag$15] and numerically analyzed more recently attractors, etg¢. were studied in pioneering works several
[16]. years agdsee, for example, Ref29]). As general source of
But, as originally suggested by Zurek and Ra4], the reference in this area we recommend interesting books where
decoherence process for classically chaotic systems has amre can find a rather extended compilation of important
other very important feature, which comes as a bonus. Theorks [30,31). For our numerical study we have chosen as
interaction with the environment destroys the purity of thenonlinear system the driven quartic double well, described in
system since they become entangled. Thus, information inidetail in Sec. Il. We study the evolution of our system for
tially stored in the system leaks into the environment andyery simple(Gaussiaj initial conditions(i.e., initial condi-
therefore, decoherence is always accompanied with entrogjons that, from a start, do not exhibit any quantum interfer-
production. This is, of course, true both for classically regu-ence effects so as to focus our attention on the interplay
lar and classically chaotic systems. But what distinguishebetween two competing effects: generation and destruction
chaotic systems is the existence of a robust range of paranef dynamically generated interferences. We also present, in
eters for which the rate at which the information flows from Sec. Il, a discussion of the breakdown of correspondence for
the system into the environmefite., the rate of entropy chaotic systems. Then, on Sec. lll the way in which we
production becomes entirely independent of the strength ofmodel the interaction between our system and the environ-
the coupling between the system and the environment and isent is presented with some detail. We do this by using two
dictated by dynamical properties of the system dinly., by = complementary approaches based on master equations both
averaged Lyapunov exponent$he reason for this can also giving consistent results but one of them enables the study of
be understood using a simplelearly oversimplifieg argu-  the evolution for long dynamical times, which is relevant for
ment. The decoherence process destroys quantum interfefiscussing the impact of decoherence on tunneling. Numeri-
ence between distant pieces of the wave packet of the systetal results concerning the time dependence of the decoher-
and puts a lower bound on the small scale structure that thence rate and a discussion of their relevance are presented in
Wigner function can develop. Thus, the Wigner function canSec. IV. Finally, we discuss the impact of the interaction
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with the environment on the tunneling phenomena in Sec. V
and we sum up with some concluding remarks in Sec. VI. 10
Il. EVOLUTION OF THE QUANTUM ISOLATED SYSTEM 5¢

In this section we study the dynamical behavior of an
isolated quantum system with Hamiltonian PO (2)

p2 , x4 sl
Ho(x,p,t)—ﬁ—bx +%+sxcos{wt), (1)
-10

which corresponds to a harmonically driven quartic double
well. This nonlinear system has been extensively studied
[32,33 in the literature. Fors=0 the system is integrable
and exhibits the generic phase space of a bistable system.
has two stable fixed points at= ++/(32ba),p=0 (with as-
sociated energf = — 16b%a) and one unstable fixed point at 15|
x=0,p=0 (with E=0). The presence of the driving term
introduces an infinite number of primary resonance zones ir 10
the phase space of the system. The tori near the separatrix
the nondriven systemE=0) and KAM invariant tori in the
region between resonance zones are progressively destroye o | (b)

as the amplituds of the driving increases. The phase space
of the system starts to look chaotic, presenting in general ¢ 5[
mixed nature as can be se€or two sets of parametersn i
Fig. 1. The regions around the two stable fixed points and the
chains of resonant islands form regular regions where the -15 | CERER R ey
dynamics of the system is nearly integrable. The chaotic lay- — . —
ers between regular regions develop from the homoclinic -~ i -
tangles, the intricate interweaving of the stable and unstable
manifolds originated at the hyperbolic fixed points between FIG. 1. Stroboscopic phase space of the driven double well with
the resonant islands or the one at the origin. For small valug@arameter¢a) m=1, b=10, a=1/32,s=1, andw=5.35 and(b)
of the driving amplitude, chaotic layers are so thin that onlym=1, b=10, a=1/32, s=10, andw=6.07. The borders of the
those near the unstable fixed point of the integrable Systelﬂ?r_k ellpse_s_ represent cont_ours of minimun uncertainty Gaussian
can be seen in the stroboscopic phase space portrait. As tH#ial conditions at 1/20 of its peak value, fop=—3.7, po=0,
value ofsis increased these chaotic regions gain in relevanc&x=09-05, =1 on the leftmost island ando=1, po=0, o5
while resonances other than the two first ones near the stabie?-0% andeo,=0.05 on the chaotic sea.
fixed points become in turn smaller and are almost invisible
to the eye. For large values of the driving amplitusléhe  we consider initial states that are pure, minimal uncertainty,
different chaotic layers merge into what is called the chaoticcoherent statgsThus, a reasonable value fbr(the one we
sea; the stable islands and two first resonant islands are muchoosg is #=0.1 for the island to be about 20 times larger
reducedsee Fig. 18]. In what follows we will choose pa- than the extent of the initial statéor the parameters corre-
rameters so that either the majority of the phase space isponding to Fig. (b) a larger value ofi could also be cho-
chaotic, as in Fig. (b), where the stable islands around the sen for our purposgsin addition to this, we numerically
stable fixed points of the integrable system have shrunk tgolved the Schidinger equation for this system evolving the
invisibility and only the two first resonance islands are seenabove initial states using two different methods. First, we
or the regular regions coexist with the chaotic sea as showimtegrated this equation with a step-by-step algorithm using a
in Fig. 1(a). high resolution spectral methdd4]. Second, we solved the
As we mentioned above, our aim is to follow the quantumsame equation applying a numerical technique based on the
evolution of initial states whose Wigner functions are fully use of Floquet statgs85]. This method consists of numeri-
contained either in a regular island or in the chaotic sea, asally finding eigenstates of the unitary evolution operator for
illustrated in Figs. (& and Xb). This requirement forces us one period(Floquet states which form a complete basis of
to take values ofi, which are small enough. Indeed, for the the Hilbert space of the system. By expanding the initial state
parameter set corresponding to Figa)1the leftmost regular on this basis, the solution of the ScHioger equation be-
island has an area that is approximately givenby 6. If comes trivial[36]. Thus, all the difficultly of the method is
we need states well localized within each regftre regular  hidden in finding the Floquet statéthe same applies when
islands or the chaotic spwe need to compare this area with solving the Schrdinger equation for a time-independent
the one covered by the dark ellipses appearing in Fig. lHamiltonian. We succesfully used this method for some pa-
which are given byA.=27In(20)o.o,=mIn(20)% (i.e.,  rameter sets but did not apply it for all cases of interest. In
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FIG. 3. Time series of the quantuffull line) and classical
otted ling expectation values ok for an initial state located
within a regular islandsee text

FIG. 2. Time series of the classical and quantum expectatiorzOI
values ofx for the states drawn on Fig(d.

fact, the main difficulty of the method is the number of Flo- )

quet states required to accurately expand the initial stated'e very long for the parameters we chdggically they are
shown in Fig. 1, which rapidly grow ds becomes smalfor ~ Of the order of 50-100 times the driving perjodhe accu-
example, for the parameters of Figb}, with #=0.1, one Mulation of error makes step-by-step integration of the
needs more than 200 Floquet states to evolve the wavechralinger equation troublesome to study this tunneling re-

packet centered in the chaotic selm what follows we will  gime. However, a solution based on Floquet states is more
discuss the typical results one finds when solving the Schroconvenient since it allows us to compute the statngttime
dinger equation with the above initial states. provided we know it within the first periodr, with 7

=27/ w [40-42. We applied this method for several sets of
parameters chosen in such a way that the number of Floquet
states needed to faithfully represent the Hilbert space does
The time series of the expectation values of the position not become too largéstill enabling us to keep states well
of the particle both for classical and quantum evolutions, fodocalized within the regular islandOne of the parameter
the initial Gaussian state located within the leftmost regulaisets we used for this purposens=1, b=10, a=1/32, s
island as shown in Fig.(4) can be seen in Fig. 2. Notice that =4, w=5.35, andh = 1. The stroboscopic phase space looks
the state is centered ap=—3.7, po=0 and that its vari- like something in between Figs(al and Xb), but the value
ances arer,=0.050,=1. Classical and quantum expecta- of 7 is ten times larger than the one used in the above figure.
tion values remain identical within the numerical errors of For this parameter set, Fig. 3 shows the evolution of the
our calculations, in agreement with previous res[83,37.  expectation value of the position for an initial state located in
Similar results were found for higher order momentsahd  the leftmost regular island, centered »gi=—3.52 andp,
p and for different initial conditions embedded either in the =0 (with o,=0.25, o,=2). This initial state was expanded
stable or the resonant islands and for different sets of paranby 20 Floquet states. In this case we clearly see the system
eters of the system. These results can be understood as folnnel from one regular island to the other one: The expec-
lows: When the initial Gaussian function is located within atation value of position oscillates around the left minima but
regular island, its Floquet decomposition is characterized bwfter some time, starts moving towards the right reaching the
a small number of states, mostly localized on the regulapther well in a tunneling time that in this case is of the order
regions. Thus, only very few frequencies enter into play inof t=567 (notice that deviation from classical behavior is
the dynamics and the time series of the expectation values abserved for times well below the tunneling time
any observable appear as quasiperiodic and regular. More- The evolution of quantum and classical distribution func-
over, as the Floquet states entering in the decomposition dfons is shown in Fig. 4 for two different times: a time half-
the initial state are localized on integrable tori, EBK quanti-way the tunneling {=287) where the wave packet is com-
zation is possible and both classical and quantum expectatigoletely delocalized, and the time for which the state has
values (and distribution functionslook identical for long tunneled to its pair related regular island on the right (
time scales. Breakdown of correspondence is expected on567). Notice that though the state is initially peaked in the

A. Initial states in a regular island

time scales inversely proportional to some power:df38], leftmost regular island, there is a non-negligible probability
which is sufficiently slow to cause no difficulties with the of finding it on the chaotic sea, due to the relatively high
classical limit of quantum theory. value of . For this reason, the Tail of the initial Gaussian

Nevertheless, as localized Floguet states come from thdistribution spreads over the whole chaotic sea as time goes
superposition of almost degenerate symmetry-related pairsn. For the classical case, this effect is not very important
(doublets, each belonging to a different parity class, thesince the state stays within the regular island. On the con-
guantum particle will eventually tunnel through the chaotictrary, for the quantum evolution, one clearly observes the
sea into the related regular islap83,39,4Q while for the  wave packet tunneling through the chaotic sea into the pair
classical particle this feature is forbidden. Tunneling timesrelated regular island on the right.
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FIG. 4. Classical(left) and quantum(right) evolutions of the
phase space distribution function for the tunneling case. Parameter 10
are that of Fig. 3. Whitegblack areas show regions where the .
Wigner function is positivenegative. In the classicalleft) case, ’
positivity of the Wigner function is preserved and only an exponen-
tially small tail of the initial state enters the chaotic sea. -5.

B. Chaotic states

For Gaussian states initially located within the chaotic
sea, as the one corresponding to the ellipse in Hig, the
behavior is quite different from that of the regular initial 20,
state. In fact, Fig. 2 shows the time series of the quantum anc .|
classical expectation values of the position for this initial oo
state. We see that after a time scale much shorter than that ¢ |
the regular caséur results are consistent with a logarithmic -5
dependence of this time scale 6i), discrepancies between -10
classical and quantum predictions are evident. For the vari- -+ -2 0 2. 4.
ous different initial conditions and parameters of the system
tested, breakdown of correspondence occurs at very early
times, and in all cases it is comparable with the dynamical FiG. 5. Classicalleft) and quantunright) distribution func-
scaler. Apart from the noticeable deviation between quan-tions for four different times. Already, for early times, interference
tum and classical predictions, one clearly sees that the exffects are observed, but after-27 they spread over the whole
pectation values have a much more irregular behavior than iavailable phase space and go down to very small scales, as shown
the integrable case. This is expected and, in the quantuiy the insets of areh, which blow up the tiny rectangles drawn on
regime, can be explained as due to the fact that the numbd#hre Wigner functions fot=27 andt=97.
of Floquet states required to expand the initial state is, con-

fum expectation values deviate from each other—the quan-
trary to the regular case, rather large. Thus, as Floguet St‘r’lt'tausm distribution function becomes affected by small scale
are mostly extended over the whole chaotic @the more y

in the semiclassical limitthe evolution of the initial Gauss- interference effects, and develops into a highly nonclassical

ian state will contain many more frequenciesiew hundred, dl_strlbutlo_n function. These results are also in agreement
. . . . ith previous one$33,37).
typically) and as a consequence of this the time evolution o S
. : - For our purposes it is very useful to represent the tempo-
any expectation value looks rather irregular. The deviation

between classical and quantum expectation values is just & Evolution of guantum states in phase space. The time
ependence of the Wigner functiqishown in Fig. 5 is

consequence of the fact that the quantum state, described In verened. in aeneral. by an equation entirelv equivalent to
the phase space by the Wigner function, becomes more a -rened, in general, by q . Yy €q
chralinger equation, which can be written as

more different from the corresponding classical distribution

function[16]. This situation is illustrated in Fig. 5 where we . (—1)N#hl2)%"

show the Wigner distribution function for the above initial  W={Ho,W}pg+ >, W3§2n+1)V(9§2n+1)W-
Gaussian statfocalized in the chaotic sgacompared with n=1 ’ @)
the corresponding classical distribution function for four dif-
ferent times. Very quickly—even before classical and quanin this equation, the first term on the right hand side is the
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Poisson bracket that generates purely classical evolutiomon Neumann equation by tracing out the environment.
The second term, containing higher odd derivatives, is reThere is a vast literature dealing with the properties of the
sponsible for the quantum correctiofE9,37. The fate of master equation obtained under a variety of assumptions.
the Wigner function can be understood qualitatively by usingOur purpose here is not to present a review of these results
the following simple argumentl4]: If one starts from an but to sketch the basic method used to obtain the master
initial state which is smootifas the ones shown in Fig),1 equations we will use for our studies belgsee Ref[10] for

the higher derivatives terms are negligible and the Poissoa more extensive review on the derivation and properties of
bracket term dominates. Therefore, the Wigner function willmaster equations in studies of decohergnce

tend to follow initially the Liouville flow, i.e., it will evolve The general approach to obtain the master equation is the
following the classical trajectories. As any point in the cha-following: We model the environment by a set of harmonic
otic sea is hyperbolic, the initially regular patch will stretch oscillators with massn; and natural frequency;, in ther-
along the unstable manifold and squeeze in the other—mal equilibrium at temperaturé. The Hamiltonian isHg
stable—direction. As the Wigner function squeezes, its de=3,w;(b/b;+1/2), whereb; andb are the annihilation and
rivative will tend to grow and, consequently, quantum cor-creation operators, respectively, for a boson mode of fre-
rections will tend to become more and more important. Thequency w;. We further assume that the interaction Hamil-
time scale for which quantum corrections must be taken intqonian between the system and the environmentHis
account can be estimatedgs=\ "~ *In(xa4(0)/) [14] where  —x>.(g;b; +g*b), whereg; are coupling constants.

x is the scale where the nonlinearities of the potential come The evolution of the reduced density matrix of the particle
into play and is usually defined as=(dxV/3;V)"?[04(0)  can be obtained by taking the partial trace over the environ-
is the initial spread of the distribution function in the stable ment of the exact von Neumann equation for the full Hamil-
manifold andA is the Lyapunov exponent of the sybte (gnian, that readifip,=[H(t),py]. This can be straightfor-
Moreover, as the motion is bounded, the Wigner functlonwarmy done under a number of standard assumptisee

will eventually tend to fold and so different pieces will co- et [10] for more detailg First, one assumes that the sys-
herently interfere making the distribution function developiem and the environment are initially uncorrelated and that
small scale structure as seen in Fig. 5. The scale at whicfhe reservoir is in an initial state of thermal equilibrium at
structure will _tend to develop is typicallgub-Planckian  ¢ome temperatur@. Second, one assumes that the system
thus, as we will havép=#/L andéx="%/P (whereL andP  4nq the environment are very weakly coupled. So, solving
are the sizes of the system in position and momejtie e yon Neumann equation perturbatively in the interaction
region over which th_e W|gner_funct|0n will tend to oscillate picture (up to second order in perturbation thepeymaster
has an area approximately given by~h*/LP=#(%/LP)  equation for the reduced density operator is obtained, which

<# [43]. In our simulations we verified that, after a time ||y determines the quantum dynamics of our system. It
consistent witht; ~0.57, for the set of parameters here con- (gads

sidered, the quantum phase space distribution does not re-

semble the classical one and the Wigner function oscillates . t

wildly on tiny scales of sizeSp~0.01 andéx~0.005(being p(t)=— f dt’gs(t—t")[x(t),[x(t"),p(t) ]]1+1

the product of the order ofi= SpSx~5x10 °<#). The 0

insets on Fig. 5 show the development of small scale struc- t

ture on the Wigner functions for relevant times. There, a XJ dt'ga(t—t")[x(t) {x(t"),p(t)}], )
detalil of the distribution function over a region of arkds 0
shown. The existence of this sub-Planckian structure in the
Wigner distribution has been overlooked in the literature an
its relevance has only been noticed recefd§].

herex(t) is the position operator in the Heisenberg picture
nd the above kernels are

o\ 2 S+
Ill. COUPLING TO THE ENVIRONMENT: MASTER gs(t—t )—Ei |9 “[1+2n(w;)]cod wi(t—t")],
EQUATIONS
Here we will describe the way in which we analyze the ga(t—t ):zi |gi|2sinf w;(t—t)], @)

evolution of our system when it is coupled to an environ-

ment. The role of such environment will be played in our

case by an infinite number of oscillators coupled to the syswith n(w)=1/(e®"“—1) (and 8= 1/kgT). It is worth stress-
tem via an interaction term in the Hamiltonian, which is ing that the above master equation is derived without appeal-
assumed to be bilinear both in the coordinates of the systefing to the usual Markovian approximatiofsee [10,22)).

and the oscillators. As we are interested in following theHowever, in our studies we restrict ourselves to the Markov-
evolution of the system solely, we will compute the reducedian regime where the kerneld) are local in time. We solved
density matrixp obtained from the full density matrix of the the above master equation for two different regimes and en-
universe(systemt- environment by taking the partial trace vironmental couplings. First, we considered the widely used
over the environment=Trg(py), wherepy is the full den-  ohmic high-temperature regime of the Brownian motion
sity matrix of the universe. This reduced density matrix will model where a simple master equation can be written and
obey a master equation that can be obtained from the fulbolved. Second, we obtained a master equation for the evo-
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lution of a coarse grained density matrix obtained from Eqwhere the coefficients , , , ; are defined as
(3) by averaging over one driving period. This can be natu-
rally done by using the Floquet representation and is useful I 5
to study some properties of the open system in the long time M u.v.a6= = 7 (€4~ €4) 80,405, ~ D165, (XN p.c
regime. We will now describe the two methods.
+5a,u<<xz>>,8,v_2<<X>>,u,a<<x>>ﬁ,v}v (7)

where the notatio(A)),, ,= 17" "dt' (¢, (t")|Al$,(t'))

The simplest special case of H§) follows when assum- is used to denote time averages of matrix elements of opera-
ing the high-temperature limit of an ohmic environment. De-tors in the Floquet basis. As this is an equation witmstant
fining a spectral density for the environment déw) coefficients, once these coefficients are numerically calcu-
= IimAwﬂow/AwEw<wi<w+Aw|gi|2, assuming that the spec- lated, the solution is formally obtained fall times as
trum is ohmic, i.e., thati(w)=ymae/#, and going to the Tu.r()=Zas(€") 1.0,804,6(0). Thedifficulty in solving
high-temperature limit, gs(t—t')=D&(t—t') and ga(t this equation resides on the large numbef Floquet states

—t')=2y5(t—t") with D=2myksT, the following well one typically needs to accurately represent a state located in

Kknown eauation for the Wianer function of the svstem isthe chaotic sedas we mentioned above, a semiclassical ar-
q 9 y gument to estimate the number of such states is given by the

A. Ohmic high-temperature environment

obtained: ratio A/(27#), whereA is the area of the chaotic sea, which
. (—1)"2" might quickly become a very large numheAs M has di-
W={HoWhppt 2, sonmp—ary o DVaZ" Hw mensionn®, numerical limitations spring up at this point.
i=1 27(2n+1)! However, for some parameter values it was still possible to
+2yap(p\l\l)+D0§pW. (5) manage the numerical problefas shown in Sec.
IV. RESULTS

The physical effects included in this equation are well under-

stood: The first term on the right hand side is the Poisson Before going into a detailed description of our model for
bracket generating the classical evolution for the Wigner disthe open system it is instructive to analyze ). so as to
tribution functionW, the terms i add the quantum correc- have an intuitive idea of what is going on. When the diffu-
tions. The environmental effects are contained in the last twaion term is absent—that means, states evolve simply ac-
terms generating, dissipation and diffusion, respectively. Ircording to Schrdinger equation—for a smooth initial state
the highT limit here considered, dissipation can be ignoredthe dominant term is the Poisson bracket. As we already
and only the diffusive contributions need be képoing this  discussed in Sec. Il, the Wigner function initially evolves
we are taking the/— 0 limit while keepingD constank. The  following nonlinear classical trajectories, looses its Gaussian
diffusion constant was chosen small enough so that energy shape and develops tendrils while folding. If the initial state
nearly conserved over the time scales of interest. Equatiois located in the chaotic sea, this happens exponentially fast.
(5) was integrated by means of a high resolution spectraDue to the combination of squeezing, stretching, and folding,
algorithm[34]. Results were stable against changes both irthe gradients increase and quantum corrections in(&xq.
the resolution of phase space and the time accuracy requirdgtcome important, so discrepancies between quantum and
on each integration step. They will be presented in Sec. IVclassical predictions begin to be relevant. Also, quantum in-
terferences among different pieces of the wave packet de-
velop and generate oscillations in the Wigner function.

The effect of the decoherence producing term in €.

It is interesting to write equatiofB) in the Floquet basis can be understood as being responsible for two interrelated
[, (1)) =exp |, (t)), where the|¢,(t)) are 7 periodic, effects. On the one hand, the diffusion term tends to wash
taking advantage of the symmetry of our systerhl,. There  out the oscillations in the Wigner function suppressing quan-
are, in the literature, several approaches of this kB&-42.  tum interferences. Thus, for this system decoherence is the
Ours is similar to that of Kohler and co-workd#], though  dynamical suppression of the interference fringes that are
in that reference the authors have restricted the use of théynamically produced by nonlinearities. The time scale char-
equation to the study of chaotic tunneling near a quasienerggcterizing the disappearance of the fringes can be estimated
crossing. When one writes the master equation in the Floqueasily using previous resulf§]: On the other hand, fringes
basis and takes the Markovian high-temperature limit, thevith a characteristic wave vect¢along thep axis of phase
resulting equation has periodic coefficients. Therefore, one spacg¢ k, decay exponentially with a rate given Hyp
can derive a temporal coarse grained equation by taking the Dk,z). Noting that a wave packet spread over a distakxe
average of such equation over one oscillation period. Thevith two coherently interfering pieces generate fringes with
resulting equation for the average density matrix in one pek,=Ax/7%, one concludes that the decoherence raté€'js
riod o turns out to be =DAZ/%2. This rate depends linearly on the diffusion con-

stant. When the Wigner function is coherently spread over
o = M o 6) the whole available phase space one expects fringes with
e S A wavelength of the order of L/ whereL is the size of the

B. Coarse grained master equation in the Floquet basis
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system(these are responsible for the existence of sub-Plancglicity, instead of looking at the von Neumann entropy
structure in the Wigner function, as mentioned in Seg. Il Hyny=—Tr(p,In p;) we examine the linear entropy, defined
The rate at which these fringes disappear due to decoherenas H= — In[Tr(pf)], which is a good measure of the degree

is thenT',=DL?%#%2. Thus, we can derive a condition that Of mixing of the system and sets a lower boundtép (i.e.,
should be satisfied in order for these fringes to be efficientlyone can show thakt,y="H). The above argument concern-
destroyed by decoherence: the destruction of the fringes, théd the role of the critical widthr, may appear as too simple
takes place at a ra@D, should be faster than their regen- but captures the essential aspects of the dynal_”mcal process.
eration, that takes place at a rts fixed by the system's Ve can present a more elaborate argument using the master

dynamics and related both to the Lyapunov time and thgquation(S) to show that the rate of linear entropy produc-

. . ~ . . tion can always be written as
folding rate. Thus, if);<I'p, the small scale fringes will be y
efficiently washed out and the Wigner function would re-
main essentially positive. It is worth mentioning that the de-

struction of fringes would generate entropy at a rate WhiChWhere the bracket denotes an integral over phase space. The
provided the conditio)(<I', is satisfied, should be inde- yiqhi hand side of this equation is proportional to the mean
pendent of the diffusion constant, and should be fixed byq,are wave number computed with the square of the Fourier
;. Thus, one could argue that every time the Wigner funCyansform of the Wigner function. This implies that the en-
tion stretghes and folds, be.commg an approximate COhere%py production rate is closely related to the phase space
superposition of two approximately orthogonal states, the desyrcture present in the Wigner distribution. Thus, the
struction of the corresponding fringes should generate abo%-independent phase begins at the time when the mean
one bit of entropy. If the time scale for the fringe disappear-sq,are wavelength along the momentum axis scales with dif-
ance ('p) is much smaller than the one for producing thefusion as\D (as o, does. This behavior cancels the diffu-

above superpositioffixed by (}¢) then the entropy produc- sion dependence ¢ that becomes entirely determined by
tion rate would be simply equal tB (ideally, one would 4 dynamics.

expect one bit of entropy created after a ime{. _ Apart from analyzing thé®-independent phase of entropy
However, the disappearance of the interference fringes i§roqyction we analyze the nature of the the transition from
not the only effect produced by decoherence. There is a Seige giffusion dominated regime to the chaotic regime. This
ond related consequence of this procéssich is als0  imet can also be estimated along the lines of the previous
present in the classical cas#Vhile interference fringes are argument: The time for which the spread of the Wigner func-
being washed out by decoherence, the diffusion term alsq,, approches the critical one ’[§~)\_1|n[0p(0)/0'c]. Ac-
tends to spread the regions where the Wigner function ig qing to this estimate. should depend logarithmically on
possitive, contributing in this way to the entropy growth. o it sion constant and on the initial spread of the Wigner

But, as disc_ussgd in RefE14,28, the rate of entropy pro- ¢ nction (for Gaussian initial states the spread depends ex-
duction distinguishes regular and chaotic cases. For regul onentially on the initial entropy, thereforee,should vary as

states, decohere'nce .ShOUId produce entropy at a rate that linear function of the initial entropy Our numerical work
pends on the diffusion constafi. However, for chaotic is devoted to testing these intuitive ideas.

states the rate should become independer? ahd should In the following sections we present our results. First, we

be fixed by the Lyapunov exponent. The origin of this ill show (for completeness of our presentatidrow deco-

D-independent phase can be understood using a Simpig, ance restores classicality washing out interference fringes.
minded argumengpresented first in Ref.14] and later dis- Then, we focus on our main goal: the study of the entropy

cussed in @ more elaborated way in R&B]): Chaotic dy- 4, ,ction rate of the system as a function of time.
namics tends to contract the Wigner function along somg

directions in phase space competing against diffusion. These o _
two effects balance each other giving rise to a critical width A Correspondence principle restored: Disappearance of
below which the Wigner function cannot contract. This local interference fringes
width should be approximately?=2D/\ (being\ the local In Sec. Il B we showed how classical and quantum expec-
Lyapunov exponentOnce the critical size has been reached tation values of the position observable become different
the contraction stops along the stable direction while the extrom each other after a relatively short time when the initial
pansion continues along the unstable one. Therefore, in thigtate is located within the chaotic sea. In Fig. 6 we show how
regime the area covered by the Wigner function grows exthis result is affected by decoherence. There one observes the
ponentially in time and, as a consequence, entropy growsme dependence of the expectation value of position ob-
linearly with a rate fixed by the Lyapunov exponent. More-tained by solving the master equati@ (i.e., considering
over, the appearance of a lower bound for the squeezing dhe decoherence effecs compared with the corresponding
the Wigner function makes quantum corrections unimportantlassical time series. It is clear that, in accordance with re-
and so the Wigner function will evolve classicalfpllowing sults previously obtained in Refl16], the correspondence
Liouville flow plus diffusive effecty and the correspon- principle has been restored.
dence will be reestablished. With respect to the behavior of the Wigner function
In this section we present solid numerical evidence sup¢shown for the case of pure Schlinger evolution in Fig. B
porting the existence of thiB-independent phase. For sim- the impact of decoherence on this distribution is seen in Fig.

H=2D((d,W)2)/(W?), ®)
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log(dH /dt)

FIG. 6. Time series of the classical and quantum expectation
values ofx for the states drawn on Fig(d, for the open system
(D=0.01).

(dH /dt)

log

7 where we compare the decohered Wigner function with the
classical distribution at three different times. It is clearly seen :
that decoherence in this case is strong enough to induce cla: o s e s
sicality, which is reflected at the level of the Wigner function time

and, consequently, at the level of any expectation value. It is

worth mentioning that the condition for classicality discussed FIG. 8. Entropy production ratén logarithmic scalgvs time
above[14,15, i.e., o.x>1, is satisfied in our case: For the gzn%r‘l'_tsac’fut:oevd;:"r(‘)%é’ri”?r):]eTTi‘:]et;ﬁ'?jg”;‘;;;iﬁ;n&;’?gg‘;n
parameters we are using here We.have ﬂW.O.Z, X%.A' appear); iFr)1 the gragh at the t@egular initir;l statgand during the
and, therefore, we are in @Ot so highly classical regime initial transient in the lower plot. In this cadéitial state in the
(remember that we are US_'@ZO'_l)' The_small scale _struc- chaotic septhe rate becomes independent on diffusion and is equal
ture developed by the distribution fuction on the isolatedys the Lyapunov exponeriif D is not too small, see text
evolution(Fig. 5) is stopped when it reaches the lower bound

o, imposed by the environment. The insets in Fig. 7 show B. Entropy production

the portions of aread= 3% of the decohered Wigner func- Here we study the time dependence of the entropy pro-
tion marked by the tiny rectangle for=97. The sub- duction rate. In Fig. 8 we plot the time dependence of
Planckian structure observed for the isolated evolution ign(d#/dt) both for the initial condition centered in the regu-
now absent: the interference fringes have a typical size that igr island and for the one centered in the chaotic [¢ka
aboveo.=0.2. initial states are the ones corresponding to those shown in
Fig. 1(a)]. Figure 8 illustrates one of the main points we want
to establish in this paper. First of all, one notices a drastic

1 ~ 1o difference between the behavior of the entropy production
5 5 rate for regular or chaotic cases. For regular initial condi-
Do po tions, the entropy is always produced at a rate that is linearly
s . dependent on the diffusion coefficieDtas it is clearly seen
in the plot at the top of Fig. 8. On the other hand, for chaotic
~101 s i e initial conditions the behavior is completely different. For
z z early times the rate depends linearly Bnbut this initial
. regime is rapidly followed by one where the entropy produc-
tion rate isindependenbf the value of the diffusion coeffi-
10- . I o cient. The existence of the initié@)-dependent transient for
s s W the chaotic case comes as no surprise. Indeed, this is what is
po » o { ﬁj expected if the entropy is coming frori) the destruction of
174 > | interference fringegwhich are initially generated at a rela-
=55} 51 [ tively slow rate; (ii) the slow increase in the area covered by
-10- -10- 2 ~ the possitive part of the Wigner function. The oscillations
-4 2 92 i -4 2 9 2 4 evident in both regular and chaotic evolution of the rate have

the frequency of the driving force and are related both
to changes in orientation of the fringdslecoherence is

FIG. 7. Classicalleft) and quantum(right) distribution func- ~more effective when fringes are aligned along momgenta
tions for the same initial condition as on Fig. 5,tat27 and t and, more importantly, to the change in spread of the
=97, when the system is opened to the action of the environmenWigner function in the momentum direction induced by the
(D=0.01). dynamics.
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Contrasting with this initial behavior described above, ini- i
tial conditions on the chaotic sea undergo a second, very 2
different regime where the entropy production ratende- I
pendentof the value of the diffusion coefficierd. More- s L
over, the numerical value of the rate oscillates around the, g ~
average local Lyapunov exponent of the system. In fact, this I
is the bold curve shown in Fig. 8, that shows the “time 161
dependent Lyapunov exponent” that is computed as an av-
erage over an ensemble of trajectories weighted by the initia ,, [
distribution. The ordinary Lyapunov exponent is obtained as
the long time limit of this curveébut, as in this paper we are
not dealing with equilibrium—or long time—properties, the
time dependent coefficient is the relevant quantity to com-
pute). For each trajectory the time dependent local Lyapunov [
exponent was calculated using the method proposed in Rel ;
[45]. This result, which is robust under changes on initial .=° 12 |
conditions and on the parameters characterizing the dynam
ics, confirms the conjecture first presented in R&4]. L ]

It is interesting to remark that while the simple picture B S S B
presented in Ref14] is in good qualitative agreement with 2 25 3 35
our results, the arguments presented in that paper are to log(D-1)
simple to include some important effects we found here. In
particular the oscillatory nature of the rate was completely FIG. 9. Transition time between the diffusion dominated regime
overlooked in Ref[14]. However, having said this, it is still and the one where the entropy production rate is set by the
possible to test some important results obtained in Ref Lyapunov exponent is shown to depend linearly on entr@pp)
for the transition timet, between both regimes. First, we and logarithmically on the diffusion constafiiottom. Numerical
analyzed the dependence of the transition time on the diffuresults were obtained using the parametds:10, C=0.5, E
sion coefficientD. Due to the oscillatory nature of the rate, =10, ©=6.16,D=10"2 (top), andH(0)=0 (bottom.
there is some ambiguity in the definition &f. Here, we
defined it as the time for which the rate reaches some valuminimal value ofD required for efficient decoherence could
after the initial transient. As the rate goes through a jump obe estimated as described above: If the Wigner function is
two orders of magnitude when changing from one regime ta@oherently spread over a region of siag~L, we would
the other, this definition is a reasonable one. Thus, we foundeed a diffusion constant larger thB,;,~#%2/L2~10"* for
a logarithmic dependence of the transition time on the diffuthe environment to be able to wash out the smallest fringes in
sion coefficient, as can be seen in Fig. 9. Second, we invesne driving period(this is nothing but the above condition
tigat_eclilthe behavior of th-e.r.ate as qfunction of the entropy ohf<1-D). In fact, Fig. 8 shows that whel =10"° the en-
the initial state. Our definition of; is the same as before. tropy production rate is one order of magnitude smaller than
Parameters of the sygtem _fc_)r these studies where those th@k one corresponding t9=10"“. Thus, for values oD
would allow states with initial entropy up t6l(0)=4 be  that are too small, the condition for classicalityrist satis-
easily located W|th|r_1 the chaotic sea. We obtained thus thgeq and theD-independent phase of the evolution is never
results shown on Fig. 9, where a linear dependence of thgiained: the Wigner function always retains a significant

transition timet; on H(0) is clearly seen. Both results con- pegative part and decoherence is not effective.
firm the naive expectation concerning the nature.ahat we

discussed above. . , V. DECOHERENCE AND THE SUPPRESSION
It is remarkable that for long times the entropy production OF TUNNELING
rate is indeed fixed just by the dynamics, becoming indepen-
dent of D (after all, the entropy production is itself a con-  For initial states localized in the regular islands corre-
secuence of the coupling to the environment but the value afpondence is broken for long times when tunneling becomes
the rate becomes independent ¢f fthe results presented in effective, as pointed in Sec. Il A. Here, we investigate the
Figs. 8 and 9 were shown to be robust under changes dffluence of decoherence on this process by using our
initial conditions and other parameters characterizing theoarsed grained master equat{@h In doing this we should
classical dynamics. be careful to choose a number of Floquet states, which is
There are two limitations for the above results to be obdarge enough. Thus, decoherence couples these states and the
tained. On the one hand the diffusion constant cannot be toexpected quasiequilibrium state should be approximately di-
strong: In that case the system heats up too fast and thegonal in the Floquet basis. One expects that usiRipquet
entropy saturates, making the numerical simulations unrelistates to expand our Hilbert space, the master equation
able. On the other hand, diffusion cannot be too small eithenvould tend to mix the state in such a way that the entropy
If that is the case decoherence may become too weak and theuld grow up to a level where all states become occupied
interference fringes could persist over many oscillations; thevith equal probability. At this point the numerical simulation

14 —— 77—
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ate, delocalized, state at tinig=28r), decoherence yields
= an asymptotic state that has approximately half of the prob-

FIG. 10. Classicalleft) and quantun{right) evolutions of the g?lg}é quaCh side of the welthis is seen on the left column

Gaussian state initially localized at the leftmost regular isleeed
Sec. Il A) when the system is opened to the action of the environ-
ment ©=0.01), for the tunneling case. VI. CONCLUSION

done in this way becomes clearly unreliable. We solved the Decoherence is a process enforced by the interaction be-

master equation computing the Von Neumann entraiy f[V\f[een ? quanttum IsysteT _angi its e_nv“onment. Plée todthls
= Tr(oIno) checking nteraction, entanglement is dynamically generated and in-

that its value is kept well below saturation. For the Sameformation initially stored in the state of the system irrevers-
parameters we described in Sec. li@nd uéing Floquet ibly leaks into the correlations with the environment. The

40 states insteadwe were able to accurately study the results we prgsented support the point of view St"?‘[mg
tunneling process from an initial state localized in thethat_for classically chaotic systems the_rate at which infor-
leftmost regular island. We analyzed the evolution of themation flows from the system to th_e e_nwronméune rate of
expectation value of position{x)=Tr{xo], which is von Neuman entropy productm)ns.mdependerjt of the
shown in Fig. 10. Suppression of tunneling is clearlys'trem?’th of the cquplmg to the environmefprovided the
observed. Notice that the asymptotic valyeof (x), though coupl[ng strength is large enou)glOur resglt; show that for
small. is not zero. This value can be es:timated aschaotlc guantum systems, the classical limit enforced by de-

_y : : coherence is quite different from the one corresponding to
Xa=lm,__JpycadXdpxW0xp,t), whereQ is the region regular systems. Thus, we showed that for classically chaotic
of the phase space within the leftmost regular island where

t—oo

the state is initially located. The numerical result shown in + = 567
the above figure is consistent with this estimate, meaning *° - 10
that the final statec has a significant part that remains  * _— 2 =
trapped in the left of the well. The evolution of the Wigner p o A E po =
distribution function, shown in Fig. 11 fot=28r and -5 e -5 =
t=>56r, illustrates the described behavior of the state of _;, = 10
the system. It is also noticeable that the state is trapped ir e S S e S S
the leftmost island as a result of the interaction with the z z
environment. -— ——

It is interesting to notice that this picture would drastically ;. t =807 10
change if the coupling to the environment is switched onata _| = . ;
timety>0 (i.e., if we let the system to evolve freely, with its T2 S
own Hamiltonian, before coupling it to the environment P d ‘3 po =
This is very easy to do using the above master equation. The = = -5 LS
results obtained in this way are simple and intuitive: If we -1o; = -10
switch on the coupling to the environment at a time when the - 2 8z 4 S T A

system has already tunneled to the pair related island on th
right (t=567), the environment will simply stop the state
from tunneling back to the initial island. Figure 1#ght) FIG. 12. Evolution of the Gaussian state initially localized at the
shows the evolution of the Wigner function in this case. Injeftmost regular islandsee Sec. Il A when the environment[{
contrast, if we turn on the coupling to the environment when=0.01) is connected at= 28 (on the lefy or atty="567 (on the
the state is half-way through the tunnelifig an intermedi-  right).
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systems there is an unavoidable source of unpredictabilityously determined by the slowest of the two time scales cor-
the rate at which information is lost into the environment isresponding to the proceses of creation and anihillation of
entirely fixed by the chaotic nature of the system. To thefringes. Therefore, when decoherence is effective, and the
contrary, for regular systems the entropy production rate ifringes disappear in a short time scale, the entropy produc-
proportional to the strength of the coupling to the environ-tion rate is of dynamical origitand independent of the cou-
ment. Therefore, the existence of a regime of couplingpling strength between the system and the environment
independent entropy production could be used as a diagnoSecond, the spread of the positive peaks of the Wigner func-
tic for quantum chaos. Our results also confirm previoudion also contributes to the entropy growth. In this case, the
estimations[14,17] for the transition timet, between two rate becomes independent of the coupling strength once the
regimes: the one where the entropy production rate is diffuphase space distribution approaches a critical width. Both of
sion dominated and the one that is set by the chaotic dynanthese processes are present in a general (cadg it is pos-
ics. Thus, we showed thdt is linearly dependent on the sible to study them separately in idealized cases, such as in
initial entropy (initial spread and a logarithmically depen- the baker’'s map46]). The results of this paper confirm this
dent on the diffusion constant. intuitive view, which can be made more precise when for-
From our results it is possible to develop an intuitive pic-mulated in terms of Eq(8).
ture of the reason why entropy production rate becomes
dqminated by the chaotic _dynamic. As we have described_in ACKNOWLEDGMENTS
this paper, there are two inter-related processes contributing
to the growth of entropy. First, the destruction of the inter- This work was partially supported by Ubac{TW23),
ference fringes that are dynamically produced in phase spad&npcyt, Conicet, and FundagicAntorchas. J.P.P. thanks W.
by the streaching and folding of the chaotic evolution. TheZurek for many useful discussions and hospitality during his
entropy production rate associated with this process is obvivisits to Los Alamos.
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